Electron transport in a quantum interferometer
نویسنده
چکیده
Electron transport properties of a quantum interferometer are studied based on the Green’s function formalism. The interferometer is symmetrically attached to two one-dimensional metallic electrodes, viz, source and drain, and here we adopt a simple tight-binding model to describe the bridge system. In this article we address numerically the conductance-energy and current-voltage characteristics as functions of the interferometer-to-electrodes coupling strength, magnetic fluxes threaded by the left and right subrings of the interferometer and the difference of these two fluxes. Our study provides several interesting features of electron transport across the interferometer, and these aspects may be utilized in designing nanoelectronic devices. PACS No.: 73.23.-b; 73.63.Rt.
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملQuantum current modeling in nano-transistors with a quantum dot
Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملRashba interferometers: Spin-dependent single and two-electron interference
Quantum transport in semiconductor nanostructures can be described theoretically in terms of the propagation and scattering of electron probability waves. Within this approach, elements of a phase-coherent electric circuit play a role similar to quantumoptical devices that can be characterised by scattering matrices. Electronic analogues of well-know optical interferometers have been fabricated...
متن کامل